
N

=

W

m

A PROPOSAL OF AN

ARCHITECTURE FOR THE

COORDINATION LEVEL OF

INTELLIGENT MACHINES

u

by

R. Beard, J. Farah, and P. Lima

u

w

Rensselaer Polytechnic Institute

Electrical, Computer, and Systems Engineering Department

Troy, New York 12180-3590

January 1993

CIRSSE REPORT #133

w

i

A Proposal of an Architecture for the

Coordination Level of Intelligent Machines

Randal Beard, Jeff Farah, Pedro Lima

January 21, 1993

b.

m

r_

n

w

1 Introduction

This report is the result of several brainstorming sessions held during

the Summer of 1992 which were extended through the Fall 92. In these

sessions the authors addressed the issue of obtaining a practical, structured

and detailed description of an architecture for the Coordination Level of

CIRSSE Testbed Intelligent Controller. Previous theoretical[13, 25, 28] and

implementation works[9, 17] were the departure point for the discussion.

The document is organized as follows: after this introductory section,

section 2 summarizes our overall view of the Intelligent Machine (IM) as

a control system, proposing a performance measure on which to base its

design. Section 3 addresses with some detail implementation issues. An

hierarchic petri-net with feedback-based learning capabilities is proposed.

Finally, section 4 is an attempt to address the feedback problem. Feedback

is used for two functions: error recovery and reinforcement learning of the

correct translations for the petri-net transitions.

m

=

m

m

2 The Intelligent Machine as a Control Sys-

tem

The complete hierarchy of tile Intelligent .XIachine (I.XI) may be seen as

a control system with different levels of resolution. Control in this context

means not only the servomechanism prol)lem but also includes progressing

7

U

w

u

towards a goal (the reference) using feedback from the results obtained so
far.

Viewing the IM as a control system requires the identification of the wide-

sense reference and feedback signals. Using as an example the CIRSSE testbed

case-study, the command Insert Strut is a reference or set point for the IM's

organization level. The required output is obtained if the strut is correctly

inserted. However, this implies that several internal wide-sense control loops

worked equally well: at the execution level the compliant controller was able

to deal with force errors without too much overshoot and the vision algorithm

could deal with noise spots when getting frames of the strut fiducial marks; at

the coordination level the strut was grabbed and the fiducial marks matched

the internal pattern; and so on.

A failure to match the reference doesn't necessarily mean a crash or some

damage. At the execution level, sensors may signal the eminence of a dan-

gerous situation (example- near collision) or an event which jeopardizes the

whole plan (example - gripper couldn't grab the strut). Thus, probabilis-

tic convergence to 1 of the requirement that 'output matches reference' is

satisfactory in most cases, since it is possible to anticipate and eventually

recover from mistakes which may occur. Ill the cases where the error is not

anticipated, a shutdown operation may be required.

Feedback flows bottom-up through the levels of the hierarchy. It has two

goals:

• Feedback will be used in a reinforcement learning[l, 16, 21] mechanism

to reward (penalty) (un)successful activities, primitive events and low

level algorithms 1.

• Feedback provides information pertinent to the Planning Coordina-

tor. This may be used to signal a failure and provide failure informa-

tion. error recovering procedure.

A major concern of a control system designer is the performance measure

for the controlled system. The design goal is to maximize that measure,

or if the system is too complex, to provide the mechanisms that will let

it learn how to maximize performance. In Intelligent Machines a possible

1 When talking about activities, events and algorithms translating the events we follow

the formalism of [24]

= =
m

measure of performance seems is entropy[18].This result is due to the fact

that entropy deals with information, independent of its source, whether that

be an image to be processed by a vision algorithm, a coded control algorithm

to be processed by a specific processor or the status information after the

completion of a given task expressed as a predicate or collection of predicates.

Actually, entropy measures uncertainty at all levels of the Intelligent Machine:

• at the execution level, there is uncertainty in terms of overshoots,

position and velocity errors, rise-times and similar features. This un-

certainty can be expressed statistically, hence entropies may be used.

In citeMusto92 it is shown that, at least in some cases, feedback reduces

the uncertainty about tile above mentioned features thus reducing the

entropy of the system. Other authors claim this is a general result,

without actually proving it[29].

• at the coordination level, there is uncertainty in terms of the success

of each of the primitive events composing an activity, as defined in [26].

At this level we deal with abstract features such as strut grabbed, path

planned, manipulator didn't move.

• at the organization level, there is uncertainty in terms of the success

of the activity planned.

In the sequel, we assume that for each event there is a initially assigned

(at the design stage) set of algorithms capable of implementing the event,

and the same happens with the assignment of events to activities.

If we minimize entropy, we are improving performance, since each of

the actions at all levels will have a broader chance of success. This can be

interpreted as a problem of improving reliability[12].:

• Given the maximum allowed entropy (minimum allowed reliability) re-

quired by the organization level for some primitive event (grab strut,

plan path, move robot), tile most reliable (i. e. the one which assures

lowest uncertainty/highest probability of success) low-level algorithm

must be chosen among the feasible ones for that event[13]. It is assumed

that there exists at least one algorithm for each event.

• Given the maximum allowed entropy required by the command given to

the organization level, the most reliable ordered sequence of primitive

events (activity) must be chosen among the feasible ones.

= :

r,-.a

However, the price to pay when a high reliability is required may be

unacceptable, either in terms of computational time or resources such as

memory, number of image frames, sampling rate.

The e-complezily of a problem as defined in Information-Based Theory of

Complexity[23] provides the lowest possible cost of an algorithm that solves

the problem given some desired accuracy e. The cost includes the prices of

getting information and processing it. Depending on the model used, differ-

ent features are weighted (CPU time, memory, etc). We are more interested

in comparing the costs of different algorithms that are able to solve the prob-

lem, although complexity may immediately tell us that no algorithm exists

that can solve the problem at hand with the required accuracy.

Given the above, the performance of the entire machine may then be

formulated as an Optimization Problem:

min cost(a)

s.t. reliability = Rd

where Ra is the reliability required at each level by its hierarchic predecessor

and a is an algorithm translation for an event or an activity translation for

a command.

We may think of Reliability as

P(worst case error with respect to specifications < e) (1)

for small e and 5.

Cost is defined as

cost(a) = sup{ci(f) + %(f)} (2)
fEF

where f is a problem element, for example the overshoot of a control algorithm

implementing a moverobot event, ci(f) is the cost of getting information

about f and %(f) is the cost of processing that information by algorithm a.

Finally, the error associated to a is, in a probabilistic setting

e(U) = sup{llf - fll: P(llf -/II < e) >__1 - _5}
,[qF

(3)

where Ilf -/11 is the error between the desired f and the f obtained by

algorithm a. Notice that F is a normed linear space. In simple words, this

m

m

=.
_-2

m

means that we control the error of estimating f, keeping it below e, except

in a subset of F with measure 6. The cost is obtained from the constraints

imposed on the error. For example, if we need to average N image frames to

reduce the error of locating an object below e, and if we don't consider the

cost of processing that information, the overall cost will be equal to ci and

thus proportional to N.

Equations 1 and 3 are similar, if we consider f as a vector of specifications

for a given problem. Hence, the formulation of Information-Based Theory of

Complexity seems appropriate to help us in the design of the IM, expressed

by the optimization problem above, if we make Rd = 1 -- 5111].

3 The Coordination Level

The purpose of this section is to propose an architecture for the Coordination

Level which incorporates some of the ideas outlined above. Some of the

specifications for such an architecture are outlined below.

° The Coordination Level should receive one activity from the Organi-

zation Level and translate it into a sequence of low level algorithms

which can be executed by the Execution Level. It should then sched-

ule and execute these algorithms, coordinating their interaction in a

deterministic manner.

.

.

The Coordination Level should have the ability to choose among alter-

native algorithms, if available, for each event, based on their reliabilities

and costs, as described in the previous section.

Cost measures which map activity translation proposed by the Coor-

dination Level onto the real line need to be developed.

. The Coordination Level should have decision capacity to choose among

alternative translation proposals, thus enabling the Coordination Level

to optimize these cost measures in some sense. The cost measures

should depend oll the reliability and complexity of the algorithms at

the Execution Level, and also on the efficiency of distributing these

routines on the underlying parallel hardware.

w

m

5. The Coordination Level should have a mechanism of learning the reli-

ability parameters of each algorithm, based on the feedback from the

execution level.

6. The Coordination Level should provide boolean feedback to the Orga-

nization Level indicating the successful�unsuccessful application of an

activity.

7. Feedback and stability within the Coordination Level need to be de-

fined.

8. The Coordination Level should contain an error recovery mechanism.

3.1 Proposed Architecture for the Coordination Le-

vel

In the following we will propose an architecture which addresses these spec-

ifications. The structure which we propose is an extension to that given in

[18] [19] [281 . We propose that the Coordination Level be organized as shown

in Figure 3.1. A brief explanation of the flow of information in Figure 3.1

will now be given.

The purpose of the Organization Level is to receive and interpret a

user command and then formulate a sequence of commands that will achieve

the requested job [25]. The Organization Level is designed to organize a

sequence of abstract actions from a set of high level primitives which are

stored in the long term memory of the machine. Various Artificial Intelligence

techniques can be used to reason, plan and make decisions about the sequence

of events which is the most likely to achieve the particular command issued

by the user [18]. The information which flows along arc 1 in Figure 3.1

is a string of events which represent a "task level" description of the task

to be performed by the machine. The Organization Level receives boolean

feedback information via arc 4, which represents the success or failure of

certain activities. Information regarding the state of the system when success

or failure occurs, is not provided to the Organization Level.

The Translator receives a string of commands from the organization

Level. This string is then translated into a Petri Net which will execute the

string of commands issued from the organizer. The translator is intelligent

m

qm_

L .

= ;

z_
i

I

q [ID
Dis_lzr

DD[]E]
JA I t
l! t t-_
| i a ,

• JMana_ I Mom_! :
i

:@ @
i
! i

i
I A I •

1 I I t

oalol

E,,_'u,bnLc_

4, I 1

Mam_,ern Mo_ a

t v I

I

Da_Fi]l:_

@

Figure 1: Flow Chart of the Coordination Level.

wmJ

m

u

t

w

w

w

in that it must perform two tasks requiring intelligence. These two functions

are;

1. the translator must decide which dispatcher primitives will be most

likely to achieve the commands issued by the organization Level, and

2. the translator must impose ordering constraints upon the primitives

determined in 1.

The first of these functions could be implemented with a neural network,

and the second function could be solved using combinatorial optimization

approaches like genetic algorithms or simulated annealing. The objectives

of the translator are to produce a Petri Net which accomplishes the task

received from the Organization Level, and optimizes the a priori estimate of

the cost measures associated with that Petri Net. The translator sends the

dispatcher a description of the high level Petri Net which it has produced via

arc 2. Tile translator receives feedback from the dispatcher via arc 3 This

feedback is in terms of the success of the events associated with the previous

translation. If the previous translation resulted in a successful control system

then the parameters of the translator are positively reinforced.

The dispatcher is a feedback controller for a distributed discrete event

dynamic system. It is implimented with Petri nets which are derived by

the translator. The search space over all possible Petri nets is inhibitively

large, therefore it is desirable that it be reduced by limiting the Petri Nets

considered by the translator. Two obvious restiction is that the Petri Nets

must be live and bounded. We will therefore impose structural constraints,

which ensure liveness and boundedness on the Petri Nets which are derived

by the translator. Imposing these constraints produces two desirable effects;

the space which the translator must search to find a feasible controller is

greatly reduced and we eliminate the necessity to test the controllers prop-

erties using Petri Net tools such as GreatSPN [2] or SPNP [3]. A description

of the class of Petri Nets proposed for the dispatcher is briefly outlined in

section 3.2, and will be analytically defined and shown to be live in future

work. The dispatcher communicates with the coordinators via arcs 5-8 The

dispatcher sends the resource manager requests for a particular procedure

to be executed. These procedures have data requirements. For example,

movePathRobot() requires that the path along which the robot will move is

u

m

7

specified. As will be explained in section 3.'2. some of the tokens in the dis-

patcher carry pointers associated with data. When a procedure is requested

from a coordinator, pointers to the input data required for that procedure

are also passed to the coordinator. When the requested procedure is com-

pleted the resource manager notifies the dispatcher and sends pointers to

output data produced by the procedure back to the dispatcher. For planning

and reasoning purposes it is imperative that data be represented explicitly

at the dispatcher level, however, communication constraints require that a

minimum amount of information flow between the dispatcher and the co-

ordinators. Therefore pointers to data offer a suitable compromise. These

pointers contain information regarding the machine and the memory location

on that machine at which the data resides.

The Coordinators are broken into two separate functional units; the

Resource Manager and the Resource Monitor.

The resource manager is a software process which is established when

the intelligent machine is initialized. It guarantees that two primitives associ-

ated with that resource are not executed simultaneously. For example open-

Gripper() and closeGripper() cannot be executed simultaneously since they are

executed by the same physical hardware. The role of the resource manager

is to process requests from the dispatcher, place these requests in a priority

queue and execute the requests sequentially by priority. A resource should

be established whenever there is more than one hardware primitive which re-

quires the same piece of hardware. Therefore a "motion coordinator" would

be replaced by "right arm coordinator" a.nd "left arm coordinator," or even

"third joint coordinator" depending on how the controllers are implemented.

The resource manager is not a Petri Net, but should be modeled as a

Petri Net to analyze the effect that interfacing to it has on the properties of

the dispatcher level Petrl Net. The Petri Net model of a resource manager

is shown in Figure .3.1. A token in a place RPj is a request for a particular

primitive to be executed. The introduction of the resource manager makes

it impossible to guarantee that the Dispatcher is bounded. However, this is

a property can be used to our advantage by using it to define a cost measure

for the system.

The resource monitors are processes which are also established when

the intelligent machine is initialized. Resource monitors initialize and main-

tain a group of monitoring algorithms which periodically check that certain

state variables satisfy specific coustraints. A predicate value is associated

m

m

m

Resoure Manager i

s

PRI
PRno

Figure 2: Petri Net model of resource manager.

u

with each state variable. This predicate variable will initially take values of

TRUE/FALSE. The dispatcher will query the resource monitor concerning

the value of these predicates and the resource monitor responds with the ap-

propriate value. Monitoring algorithms are the key element in the definition

of the Coordination Level internal feedback structure which will be defined

in future work.

The dispatcher is also able to spawn Data Filters. These are processes

which are not associated with any particular hardware resource, and can

therefore be run on the machine which is the least busy at that time. For

example once a digital inaage has been obtained with a camera, there may

be a program which analyzes the image and produces the location of an

object. This program is a data filter and does not have any specific hard-

ware requirements, and can therefore be run on any machine in the network.

Therefore a resource manager is not required to schedule execution of these

programs. Data filters receive input data pointers from the dispatcher and

return output data pointers via arcs 13 and 14.

Testbed Hardware Routines are routines that interface directly to

tile testbed hardware. They are precompiled routines that are spawned and

i
10

r
m

w

i

=

=

u

executed by the coordinators. Resource managers establish processes via

arcs 9 and 10 which run testbed hardware. These processes control and

manipulate the hardware. Resource monitors establish hardware routines

which test the status of various processes and hardware via arcs 11 and 12.

3.2 Petri Net Structure Within the Coordination Le-

vel

The Petri Nets associated with the dispatcher fulfill two distinct functions

• First, they establish and maintain the process flow, by establishing

precedence relations which are inherently dictated by the task under

consideration. For example, we must move the end effector close to an

object before we can grasp it, etc.

• Second, they establish data flow in the system. For example data

produced by a path planning algorithm is sent to the motion control

system which actually moves the arm along the specified path.

These two functions are distinct and should be represented explictly in the

Petri Nets comprising the dispatcher. Therefore the dispatcher will be a

superposition of two Petri Nets, one ensuring the integrity of process flow

and the other ensuring the integrity of data flow. Corresponding to these two

nets will be two types of tokens which are attached to pointers that represent

certain information. Process tokens will carry information about the current

process which is being executed. Data tokens will carry data pointers which

are needed to execute the data filters spawned by the dispatcher. The Petri

Net which makes up tile dispatcher will contain two types of places and three

types of transitions. Process places contain process tokens and data places

contain data tokens. Process places and data places are disjoint. The three

types of transitions are as follows. Process flow transitions simply specify

the flow of process tokens through the net. Hierarchical transitions spawn

and execute processes. These process may either be lower level Petri Nets or

requests to a resource manager to execute a hardware routine. Both process

places and data places can be connected to hierarchical transitions. Data

processing transitio_s execute data filters. Only data places are attached to

these transitions.

ll

The dispatcher is organized as a hierarchy of Petri Nets. It is common

practice to organize Petri Nets in a hierarchical structure for modeling pur-

poses [51 [22] [271. However when a controller is actually implemented from

this Petri Net the "flat," or expanded Petri Net is actually executed [17]. This

results in several problems. One such problem is that it becomes difficult to

execute complex tasks which are represented by extremely large Petri Nets.

When the Petri Net becomes large, the time spent searching for enabled tran-

sitions becomes very large. Various tricks such as random linear search [17]

and object oriented techniques are used to improve the search time. How-

ever these tricks can result in starvation [14]. Therefore it is desirable to only

execute a small portion of the net at a time. By dynamically executing the

Petri Net in a hierarchical fashion this problem is eliminated. Each lower

level Petri Net is executed as a separate process which is spawned when the

transition representing that Petri Net is fired, therefore only a small portion

of the transitions are being searched at any one time, and these transitions

are limited to those which are most likely to be enabled at that instance of

time.

w

3.3 Translation of an Event into an Algorithm

Some additional considerations about the translation of an event into a

Testbed Hardware Routine by means of a Hierarchical Transition need to

be expande upon. Each event must be translated into a low level algorithm

which accomplishes the respective task (examples: moverobot, Iocateobject,

planpath. The system has a set of algorithms capable of implementing that

event. In each instance, a set of feasible algorithms is determined given the

present states of tile system and of the environment. The set of feasible

algorithms is composed of:

• Algorithms associated with the event that, according to some internally

stored and regularly updated world model, are appropriate for the cur-

rent state of the worhl. Hence we get rid of algorithms that are not

suited for the current conditions, even though they are able to solve

the problem associated with the event,

• Algorithms associated with the event that have a current estimated

reliability greater than or equal to the desired reliability assigned to

the event by the Organization Level.

12

The algorithm of least cost among all the feasible algorithms is selected

and applied to solve the problem associated to the event. The model under-

lying the cost computation reflects the main issue in terms of performance

for that event: memory, CPU time or other(s)[23, 11].

Initially, the estimated reliabilities of the events composing the activity

may all be set to the same value. The learning mechanism will essentially

learn the nominal reliability of each algorithm along time, as the algorithm

fails or succeeds accomplishing its assigned tasks.

According to what was proposed in the previous section, each primitive

event should thus have associated with it a corresponding resource primitive.

One of the rules of the resource primitive is to choose among different possible

algorithms feasible for that event the one of less cost. This resource primi-

tive should also implement the feedback algorithm for the event, rewarding

algorithms that were successful implementing the event and penalizing the

unsuccessful ones.

w

3.4 Learning the Reliability Parameters

At the coordination level, the algorithm parameters referred to in the last

section must be updated in time in order to reflect the increase (decrease) of

confidence in a given action after its (un)successful application to a particular
state of the world.

Reliability as a statistic measure of the success of control/vision algo-

rithms for pose estimation was studied in [12]. Probability distributions are

used to model the uncertainty associated with the success of applying an

action to the controlled system. In this context, success means that specifi-

cations were met with some pre-assigned accuracy e (see equation 1). How-

ever, some parameters are assumed as previously known, such as the mean

and variance of the gaussian distribution for the maximum overshoot or final

position error. The learning procedure may change these parameters in a

suitable way. For instance, if the low level control fails due to an unexpected

oscillation, the mean value of tile overshoot must be increased for that par-

ticular algorithm, thus reducing the estimated reliability of getting a low

overshoot with that particular algorithm in that particular world. This will

discourage further applications of the algorithm when overshoot is critical.

13

--2

4 The Feedback Hierarchy

Wide sense feedback is present now only at the Execution Level of the

Intelligent Machine, either in control or vision algorithms (ex. determine the

position of an object using a reference prototype in an internal data base). It

seems intuitive that feedback from one level to its hierarchic predecessor will

reduce costs (for example the best path may be learned by trial, error and

reward along time[10 S, improve reliability (the more accurate we are about

the reliabilities of the different algorithms, more chances of success we have

for the entire activity) and provide error recovery.

Feedback may be used for two distinct functions:

• A reinforcement learning scheme will reward/penalize the set of activi-

ties, primitive events or low level algorithms which induced some state

(marking of a petri-net, for ex.) in the level hierarchically below. The

amount of reward/penalty will depend on a classification based on error

analysis.

• In error recovery, procedures will be assigned, depending on the failure

classification.

4.1 Feedback for Reinforcement Learning

In simple terms, the flow of feedback for reinforcement learning through

the hierarchy is:

• at the coordination level, the association of a low level algorithm to

a primitive event is rewarded/penalized after the completion of the last

chosen low level routine for that event. The amount of reward/penalty

depends on the state of the execution level after the application of

the event. Failures and successes of a plan should also modify the

importance of each event inside the activity.

• at the organization level, one activity is rewarded/penalized after

the completion of the corresponding ordered sequence of events. The

amount of reward/penalty depends on the state of the coordination

level after the application of the activity.

More work needs to be done in this area, in order to clarify', implement

and formalize concepts.

14

=

m

L
n

u

W

4.2 Error Recovery

The Planning Coordinator is a logical extension to the Coordination Level

of the Intelligent Machine Model, functioning to provide a heretofore unavail-

able platform for robust error recovery and dynamic on-line planning by au-

tonomous and semi-autonomous robotic systems. This section introduces the

design architecture of the Planning Coordinator and focuses upon its macro-

structure, interfaces and functional description, with respect to its role as the

mechanism whereby an existing robotic system requiring significant human

intervention can be made more autonomous, thus becoming more robust.

4.2.1 Planning Coordinator: Macro Architecture

Physically, the Planning Coordinator is a functionally stratified, stand

alone device operating as a logical extension to the Coordination Level of

the Intelligent Machine. It logically connects to the physical communication

scheme of the Intelligent Machine through external communication ports.

Unlike the other Coordinators in the Intelligent Machine, the Planning Co-

ordinator does not communicate directly to any piece of physical hardware

or to the Organizer. To engage in communication, the Planning Coordina-

tor utilizes the communication schemes that exist between the other Coor-

dinators and the hardware they coordinate, as well as the communication

scheme between the Dispatcher and the Organizer. As a logical extension to

the Intelligent Machine, the Planning Coordinator is logically subservient to

whatever is considered to be the main controller of the Intelligent Machine.

This is necessary to ensure system coherence. In the event of a catastrophic

main controller failure the Planning Coordinator might assume the role of

the overall system controller, but to a very limited extent. The Planning

Coordinator is expanded in Figure 3, to introduce the constituent parts of

its macro architecture, listed below. These parts are grouped by level.

Current World Model (CWM) - Level 1 Shadow Coordination Level Petri

Net (SCPN) - Level i Primitive Structure Database (PSDB) - Level 2 Node/Link

Weighting Mechanism (N/L-WM) - Level 2 Mapping Mechanism O[M) -

Level 2 Error Recovery Generation Algorithm (ERGA) - Level 2 System Fault

Monitor (SF3 D - Level 3

With the exception of the System Fault Monitor, these components con-

stitute the mechanisms whereby a task level error recovery (or on-line plan

15

m

m

i

// Coordination/
/ Level

/ PetriN_/
Level 1

I Node/Link WeightingMechanism
dmitive Structure

Database ;

..... :::: Level 2

I System Fault Monitor 1

Level 3

Figure 3

The Planning Coordinator (PCOORD) Constituent Parts

lip

i

which henceforth is considered to be a specific instantiation of an error recov-

ery), will be successfully executed. The following subsections elaborate on

the seven constituent parts that comprise the Planning Coordinator. Of high-

est significance to this document are the five major component parts of the

Planning Coordinator: Current World Model, Primitive Structure Database,

Node/Link I'Veightin9 Mechanism, Mappin9 Mechanism, and Error Recovery

Generation Algorithm.

4.2.2 The Current World Model

The Current World Model is a dynamically changing, linguistic represen-

tation of the most current environmental information available to the Plan-

ning Coordinator. Its function is to accurately represent the most current

status of the environment in which the Planning Coordinator, and hence

the Intelligent Machine, must operate. Unlike the long term, quasi-static

Global World Model, the Current World Model maintains a shorter term

representation. *rith two major exceptions, only a portion of the Current

World Model will be active at any one time. The first exception occurs when

information from the Current \Vorld Model is initially interpreted to create

the Primitive Structure Database. The second exception occurs when the

Current World Model is called upon to update the Global World Model with

new information derived from the activities of the Planning Coordinator.

Note that in the development of the Planning Coordinator, it is antic-

ipated that the Current World .Model will change significantly over a long

period of time and as such, (lifter significantly fi'om the Global World Model.

A question arises as to the need for the Current World Model if a Global

World Model exists and can be made to be accessed reliably and efficiently.

This question is answered as follows. The Primitive Structure Database, to be

discussed, represents Primitive Structures derived from the Current World

Model. When the Current World .Model changes, the existing Primitive

Structures are not lost. They remain in the Primitive Structure Database

which is augmented through the addition of the new primitive structures.

Hence were the Global World ._Iodel to succumb to a catastrophic failure,

none of the information that had been contained in it would be lost. This

is because the Global \\:orld .Xlodel can be regenerated from the informa-

tion stored in the Current World ._lodel and the information stored in the

Primitive Structure Database. The regeneration of the Global World Model

17

=

w

=:

i

m

from the Current World Model and the Primitive Structure Database is not

of concern to this document. It is considered to be potentially future work

outside of the scope of this document, and is of itself a research area.

4.2.3 Shadow Coordination Level Petri Net

Within the hierarchy of the Intelligent Machine Model, task representa-

tion is performed through the use of Generalized Stochastic Colored Petri

Nets as described previously. To maintain the continuity of this represen-

tation during its design phase, the Planning Coordinator utilizes a Shadow

Coordination Level Petri Net, as a graphical representation tool. It is antici-

pated that the Shadow Coordination Level Petri Net will eventually become

unnecessary and will be eliminated as a graphical representation tool. How-

ever, its function will be maintained.

The Shadow Coordination Level Petri Net is functionally, an exact copy

of the executing Coordination Level Petri Net generated by the Dispatcher of

the Coordination Level of the Intelligent Machine. Depicted in Figure 4a is

a Coordination Level Petri Net, and in Figure 4b, the Shadow Coordination

Level Petri Net, identified by its transitions. These transitions maintain con-

nections to Map Interface Error Recovery Nodes that reside within the Map-

ping Mechanism of the Planning Coordinator. Through these connections

it is possible to determine the exact location from which an error recovery

would be enacted should the need for one arise, since errors occur only at

Petri Net transitions. Identifying the locations of potential errors permits

the pre-creation of most likely errored event recovery plans. Hence when an

error does occur, and is the most likely errored event, an immediate response

is possible. Considering an error that is not the most likely errored event

requires the use of alternate plans. These alternate plans are built up from

Primitive Structures that represent the actions and objects existing in the

environment of an intelligent machine. They can be stored in a database for

retrieval. This database is called the Primitive Structure Database and is

the subject of the next subsection.

4.2.4 The Primitive Structure Database

The Primitive Structure Database (PSDB) is a database containing Prim-

itive Structures that represent the basic operations that can be performed by

18

m

Figure 4A

A Coordination Level Petri Net

m

g

P5
t4

P4

t3

/

/
/

___,_. Primitive StructureInterface Node

Experience Vector Node

":_i":Map Interface Node

Figure 4B

The Shadow Coordination Level Petri Net Equivalent

=

m

mice

PRECEDiP_G P_GE BLANK NOT FILMED

w

m

an intelligent machine, as well as the objects that exist in the environment

of an intelligent machine. These Primitive Structures are derived from the

Current \Vorld Model which represents the most up to date environmental

information available to the intelligent machine. The formal definition of a

Primitive Structure is given below:

Primitive Structure

A potentially complex, building block created by the Planning Coordina-

tor, based upon environmental information contained in the Current World

Model, and functioning to represent the primitive actions (objects) capable

of being performed (identified) by the intelligent machine. Several Primitive

Structures can be combined to form complex plans that can later be used as

either error recovery plans or on-line plans.

In keeping with the general structure of the Intelligent Machine Model,

the Primitive Structures are individually, live, safe, bounded Petri Nets. Syn-

thesizing these smaller Petri Nets into larger ones has been shown by Zhou,

DiCesare, Narahari, and I(oh to result in live, safe, bounded Petri Nets

given that the properties of liveness, safeness, and boundedness existed in

each of the smaller Petri Nets [30] [4] [15] [6]. In Section 2, both Generalized

Stochastic Colored Petri Nets and Semantic Networks were introduced. The

following builds on the descriptions of these two constructs.

The Primitive Structure Database is modeled using a Semantic Network.

The Semantic Network model nlakes use of nodes, representing events and/or

objects, and directed arcs, representing the relationships between objects.

The nodes can be hierarchically structured, thus permitting descendants to

inherit form and function from their ancestors. This is important because

the descendants themseh'es may be separate nodes in the PSDB. In addition,

through the use of case-frames as previously described, inherent search lim-

iting agents are built into the Primitive Structure Database nodes. Finally,

each of these nodes is connected in some way to other nodes. The con-

nections may be simple or multiple, depending upon the complexity of the

Primitive Structure Database. These connections are achieved through the

use of linguistically identified, directed, relational arcs. The relational arcs

permit conceptual relations between the nodes and as such are the natural

points at which the strenglhs of such rela.tions can be established. Since the

relational links are directed, they provide natural pathways from one node

to another. These natural pathways can be exploited to establish ordered

error recovery or on-line plans. There is a difficulty in using this approach,

2O

!

however. There may be multiple paths between any two nodes in a network.

To assign a strength value to each of the links between any two nodes and

to distinguish between the multiple paths that may exist between any two

nodes (i.e., choose the best path from among all), the Node/Link Weighting

Mechanism was introduced. The Node/Link Weighting Mechanism, is the

subject of the next subsection.

4.2.5 The Node/Link Weighting Mechanism

The Node/Link Weighting Mechanism is one of the five major components

of the Planning Coordinator. It functions to assign fuzzy weights (f-weights)

to the nodes and relational links that comprise the SNet based Primitive

Structure Database. The f-weights are used for two purposes. The primary

purpose is to establish the relational strength(s) of one node to another,

based on the linguistic relation connecting them. The secondary purpose is

to combine the f-weights assigned to each individual relational link in some

established path plan, and defuzzify the result. The defuzzified result pro-

vides the overall possibility of success number that the plan's path represents.

The possibility of success number is then used to hierarchically organize, from

highest possibility of success to lowest possibility of success, all of the plan

paths whose possibility of success numbers' exceed some established thresh-

old value. This organized list, called a plan execution list, contains those

plans that have been deemed applicable to some error recovery or on-line

plan request.

Once a possibility of success number has been determined, each of the

relational links along the plan path that is responsible for the number's cre-

ation is assigned an ordering identifier, indicating which plan or plans in the

execution list, the link refers to. The assignment of the relational f- weights,

the combining of a series of relational f-weights into an overall plan f-weight,

and the defuzzification of the overall plan f-weight into a 'crisp number' are

examined in the following subsections.

4.2.6 Assignment of Relational F-_,Veights

The universe of discourse represented in an intelligent autonomous system

is that derived from the system's knowledge of its environment as transformed

into Primitive Structures and the relationships between Primitive Structures.

2l

-,B

i .L

As has been stated, the Primitive Structures are maintained in a non-fedback

SNet which is a structure very similar to the Fuzzy Cognitive Map of Kosko

and Styblinski [7] [20]. These similarities permit the use of Fuzzy Cognitive

Map techniques.

In establishing the Primitive Structure Database the first step is to derive

the Primitive Structures and the relationships between Primitive Structures

from the environmental information. Here it can be assumed that the Prim-

itive Structures have been made available with no loss of generality. The

resulting universe of discourse is an arbitrarily large but finite set of in-

terconnected nodes, similar in structure to the Dempster-Shafer frame of

discernment [8]. The major difference results from the fact that the universe

of discourse is dynamic and hence it is necessary to use a Semantic Network

base which permits changes in the base without destruction of the existing

base.

The Node/Link Weighting Mechanism utilizes a dynamic Fuzzy Rule

Base created by an Expert System from the available environmental infor-

mation. Prior to the operation of an x-autonomous system, there are basic

rules available, akin to the instinctual capabilities that human beings possess

from birth. As the z-autonomous system begins to operate, its environment

changes and the Expert System derives new rules to be added to the dynamic

Fuzzy Rule Base. The feasibility of the dynamic Fuzzy Rule Base has been

demonstrated [7]. The Primitive Structure Database, is initially a semantic

network. Until application of the Node/Link Weighting Mechanism, there

are no f-weight relations. The Node/Link Weighting Mechanism takes two

connected nodes in the Primitive Structure Database and their linguistic re-

lational arc and applies them to the Fuzzy Rule Base. The result of applying

these two nodes and the arc is an f-weight, which is applied to the arc. When

two nodes have multiple connections, potentially differing f-weights are as-

signed to each of the individual relational arcs. In this way, two nodes can

have varying degrees of relational strength, based on the relation itself. This

same procedure is applied to all pairwise nodes in the Primitive Structure

Database according to the general procedure outlined below.

General Procedure

(Prior to beginning x-autonolnous system operation)

Step I: From information in the Current \Vorld ._Iodel, use Expert System

to derive dynamic Fuzzy Rule Base.

Step 2: From Curreut \Vorld ._[odel derive the nodes and links for primary

")0

semantic network.

Step .3: Beginning from any node in the resulting connected digraph,

utilize minimal time, complete search techniques to search and mark the

entire digraph. During marking, take any two connected nodes and the

directed arc between them and apply them to the Fuzzy Rule Base, resulting

in an arc f-weight.

Step 4: Apply the f-weight to the relational link and return to Step 3

until the entire digraph is done.

(Upon completion of the Node / Link Weighting)

Step 5: As new nodes are added to the newly created Primitive Structure

Database, begin at a newly introduced node and determine which node or

nodes it is connected to. Apply the newly introduced node and the nodes it

is connected to, to the Fuzzy Rule Base and determine an f-weight. Apply

the f-weight to the new relational link as before.
End Procedure

Utilizing the above permits the establishing of a new Primitive Structure

Database, or the augmenting of an existing Primitive Structure Database.

As has been described, it is possible to start at one node (i.e., a start node)

and efficiently trace out a path or paths to another node (i.e., a destination

node). It is likely that with the high probability of multiple connections

existing between two nodes, there will be multiple paths between two nodes.

Within the confines of error recovery it is necessary to differentiate these

paths into a hierarchically ordered plan execution list. This requires the

combining of individual link f weights into an overall plan f-weight, the

subject of the next subsection.

4.2.7 Determining Overall Plan F-Weight and Creating Plan Ex-

ecution List

Once the Primitive Structure Database has been constructed it is ready to

be used by the Planning Coordinator for error recovery. In its final form, the

Primitive Structure Database resembles a Fuzzy Cognitive Map. This resem-

blance permits the application of Fuzzy Cognitive .Map Summation Methods

to sum the individual link weights along a particular path. Once the weights

along a particular path have been summed, the overall value is defuzzified

into a crisp number. This crisp number is then used for comparison against

a threshold value. If the number exceeds the threshold value, the plan is con-

23

=

sidered viable and is placed in the plan execution list. The general procedure

is given below:

Plan Execution List Generation

Step 1: Identify plans generated by Primitive Structure Database search.

Step 2: For each plan, start at the start node and trace plan through to

the destination node. At each connecting link, assign plan identifier to each

link along the plan path, and store each link fuzzy value.

Step ,9: For each traced through plan, take link fuzzy values and apply

Fuzzy Cognitive Map Summation Method to it. Defuzzify the result into

a crisp numbe,'. If the crisp number represents a value that exceeds the

established threshold value, store tile value and tile plan identifier in the

Plan Execution List, else discard it.

Note: If crisp number represents ilrst plan, store in first slot of Plan

Ezecution List regardless of its value. This will ensure that at least one

plan is available go be tried. For each subsequent plan entered into the Plan

Ezecution List, use binary search to find the correct position for the new plan

in the Plan E:reeution List. If a subsequent plan values ezeeed the first plan

value, but do not exceed the threshold, then replace the first plan with the

subsequent plan.

Step 4 : Update link identifiers in Step 2, to reflect plan position in the

Plan Execution List of Step 3.

Note: It is possible that a single link may be needed for more than one

plan. Due to this possibility, a single link may have multiple identifiers.

End Procedure

The result of this general procedure is a Plan Execution List containing

ordered viable plans, with ordering numbers. These ordering numbers are

used to execute the plans sequentially until one plan is successful or until

all plans have been exhausted. If a plan is executed and is successful, the

plan is rewarded. If a plan is unsuccessful, it is penalized. The method of

applying a reward or penalty is as yet undetermined and remains an open

area for further research. Previously, it was stated that through the Shadow

Coordination Level Petri N'et it is possible to immediately ideutiS" where an

error recovery must begin and end. This is due to the fact that errors can

occur only at the Petri N'et transitions. These transitions are connected to

Map Interface Nodes that reside on Level 2of the Planning Coordinator. The

following section introduces lhe ._[ap Interface Nodes as well as the .Mapping

Mechanism of the Planning Coordinator.

24

u

4.2.8 Mapping Mechanism

Tile desired one-to-one mapping mechanism of the Planning Coordinator

is both a structure to maintain three specific node types and a methodology

to efficiently perform the following three functions:

1. Connect Shadow Coordination Level Petri Net transitions to Map In-

terface Nodes.

2. Connect Primitive Structure Interface Nodes to their Primitive Struc-

tures in the Primitive Structure Database.

3. Create E.rperience Vector Nodes based upon previously enacted, suc-

cessful error recoveries.

The three different node types are defined below.

Map Interface Node

A dynamically allocated, two or three port active, interface point that

connects to a Shadow Coordination Level Petri Net transition, the start

(end) node of an error recovery or on-line plan, and an Experience Vector

Node. Two Map Interface Nodes are created for each Shadow Coordination

Level Petri Net transition. They are created at the same time as the Shadow

Coordination Level Petri Net.

Primitive Structure Interface Node

A Primitive Structure Interface Node represents a pointer to a Primitive

Structure in the Primitive Structure Database. It is necessary that each

Primitive Structure be represented by a Primitive Structure Interface Node

to ensure the identification of the start and end nodes of an error recovery

or on-line plan.

Experience Vector Node

An Experience Vector Node is attached to the third port of the input

Map Interface Node (i.e., tile side connected to the input side of the Shadow

Coordination Level Petri Net transition). It represents a successfully enacted

error recovery or on-line plan sequence. The Experience Vector Node main-

tains the entire plan path through a vector of Primitive Structure Interface

Node identifiers. These identifiers maintain the order of execution of the

nodes. In addition, the Experience Vector Node maintains the state of the

system when tile error occurred. This permits an immediate response to an

identical error.

25

Note that if the same error recovery does not work for an identical error,

the Experience Vector Node is updated with information on the new error

solution, when the new error solution is found.

In order that a Map Interface Node can connect to any Primitive Struc-

ture Interface Node, as is required for the operation of the Planning Coordi-

nator, the network of Map Interface Nodes and Primitive Structure Interface

Nodes must be a fully connected network. The choice of which links in the

Map Interface Node / Primitive Structure Interface Node network to make

active and which to leave inactive is determined by the places in the Shadow

Coordination Level Petri Net that immediately precede and follow a transi-

tion connected to a Map Interface Node.

A considerable amount of the work that the Planning Coordinator must

do can be done while the overall Intelligent Machine is not engaged in error

recovery. As a result, the preprocessing of the error recovery plans can be

done in parallel with the execution of the Intelligent Machine, saving overall

execution time. This does not mean that the Planning Coordinator's primary

function as an error recovery unit remains dormant until the preprocessing is

done. The Planning Coordinator's overall function is governed by the Error

Recovery Generation Algorithm, the subject of the next subsection.

4.2.9 Error Recovery Generation Algorithm

The Error Recovery Generation Algorithm governs the operation of the

Planning Coordinator. The algorithm itself assumes the availability of spe-

cific information from the Intelligent Machine, the accessibility of commu-

nication ports to the Intelligent Machine and priority over all other coordi-

nators. Some of the information which must be provided by the Intelligent

Machine to the Planning Coordinator includes.

* Error status based upon a flag called ERR-FLAG. If asserted, an error

is present. If not asserted, no error is present. * On-line Plan status based

upon a flag called OP-FLAG. If asserted without ERR-FLAG, a short term

on-line plan is required. If asserted with ERR-FLAG, an interactive on-line

plan is required. * Intelligent Machine main controller status based upon a

flag called MC-FAIL. If asserted, the main controller has failed.

Figure 5 shows the two stage flow diagram of the operation of the Er-

ror Recovery Generation Algorithm. Stage 1, details the preprocessing of

the initial Current _rld Model, Fuzzy Rule Base, and Primitive Structure

26

w

N

Database. Stage 2, details the preprocessing of the initial error recovery

routines and the processing of error recoveries, on-line plans, and modifica-

tions to the Primitive Structure Database. The steps involved in the Error

Recovery Generation Algorithm are detailed following the figure.

Prior To Conanaencin_ Operation of the Intelligent Machine

Step 1 .. /,From the Global World Model create the Current World Model.

Initially, the Current World Model and the Global World Model will be the

same.

Step o

A) From the Current World Model, use an Expert System to create the

dynamic Fuzzy Rule Base. Initially this base may contain rules that

are considered to be instinctual.

B) From the Current World .Model, derive the underlying Semantic Network
of the Primitive Structure Database. This includes both nodes and

links.

C) For each node created for the underlying Semantic Network of the Prim-

itive Structure Database, create a Primitive Structure interface node.

Step 2 /,From the Fuzzy Rule Base and the Semantic Network create

the Primitive Structure Datal)ase by marking the SNet and applying each

pairwise connected set of nodes and their connecting link to the Fuzzy Rule

Base, yielding an f-weight.

After Commencing Operation of the Intelligent Machine

Step 4 Create Shadow Coordination Level Petri Net and establish con-

nections to Map Interface Nodes.

While neither ERR-FLAG, nor OP-FLAG nor MC-FAIL is asserted per-

form Step 5 else perform Step 6:

Step 5 A) Preprocess most likely errored event for each Shadow Coordi-

nation Level Petri Net transition and store resulting plan.

B) Monitor introduction of new information into the Current World Model.

If applicable perform Step 2 and augment Primitive Structure Database as

per Step 3.

Step6 Using ERR-FLAG, OP-FLAG and 3IC-FAIL, attempt to identify

the error fi'om the information given by the Intelligent Machine. For ERR-

FLAG and OP-FLAG, determine the Shadow Coordination Level Petri Net

27

m

m Error Recovery Generation Algorithm

w

,,..._. Start

iCre.;_eT_I Crea,_gmeo,I"
1 l

cr..,PsI I Create Fuzzy Rule Base j

YES

Stage 2 / PSDB

i
Create / Augment

SCPN & MM

@No
I Identify Error I

_ YES

1
[Request Convol]

I Analyze Error]

l
t Eslablish & Perform

Error Recovery

, for

Figure 5

w

transition from which the error began, and activate Map Interface Node.

For MC-FAIL , assume system control and attempt system restoration. If

successful, return system control to the Intelligent Machine main controller.

If unsuccessful, notify external base for assistance and gracefully shutdown

Intelligeut Machine operation.

Note: There are several types of errors possible during task execution.

S__..tep 7 Notify the Intelligent Machine's main controller that an error has
occurred. Note that the main controller may already know that an error has

occurred. This step is to ensure the continuity of error data transmission.

Step8 A) Request control of the Intelligent Machine's operation from the

main controller to prevent interference during error recovery. If not granted,

re-try four times. If not granted, abort error recovery.

B) If granted, analyze error information from Step 6. If information is

sufficient to enact error recovery, do so. Otherwise use system components

(i.e., Vision System, Motion Control System etc.) to try to gain further

information on the error type.

Step 9 A) If an error is the same as the calculated most likely error, then

execute the preprocessed most likely error, error recovery. If the error is not

the most likely error, then establish recovery plans in the plan execution list.

B) Execute first plan in the plan execution list. If successful return control

to main controller. If unsuccessful, execute remaining plans in the plan

execution list until either all plans are executed or one is successful. If no

plans are successful, report irrecoverable error to the main controller and

return control to the main controller.

Step 10 Return to Step 5 and continue.

This concludes the Error Recovery Generation Algorithm. The next sub-

section outlines the System Fault Monitor.

4.2.10 System Fault Monitor

The System Fault .Monitor functions to monitor and perform hardware

diagnostics of the Planning Coordinator and if desired, the Intelligent Ma-

chine to which the Planning Coordinator is connected. Although it performs

an error recovery function for hardware, the System Fault Monitor is not one

of the major components of the Planning Coordinator. This is because its

function is in an area that has been very highly developed. Existing fault

diagnostic techniques do suffice.

w

i

29

Y

w

i

w

u

References

[1] N. Babe. New Topics in Learning Automata Theory and Applications.
Lecture Notes in Control and Information Science, Springer-Verlag,

1985.

[2] G. Chiola. GreatSPN 1.5 Software Architecture. University of Torino,

jul 1990.

[3] G. Ciardo. Manual for the SPNP Package Version3.0, jun 1990.

[4] F. Dicesare and M.D. Jeng. A review of synthesis techniques for petri

nets. CIM Internal Document, Rensselaer Polytechnic Institute, 1988.

[5] P. Huber, K. Jensen, and R.M. Shapiro. Hierarchies in colored Petri

Nets. In G. Rozenberg(ed.): Advances in Petri Nets I990. Lecture Notes

in Computer Science, volume 483, pages 313-341. Springer, Berlin Hei-

delberg New York, 1990.

[6] I. Koh and F. Dicesare. Modular transformation methods for generalized

petri nets and their applications to automated systems. CIM Internal

Document, Rensselaer Polytechnic Institute, 1988.

[7] B. Kosko. Fuzzy cognitive maps. [rzter1_ational Journal of Man Machine

Studies, 24, January 1986.

[8] B. Kosko. Adaptive inference in fuzzy knowledge networks. In Proceed-

ings of the [CNN, 1987.

[9] Don R. Lefebvre and George N. Saridis. A computer architecture for

Intelligent Machines. In Proceeding of [EEE [_dernational Conference

on Robotics a_d Automation, may 1992.

[10] Pedro Lima and Randal Beard. Using neural networks and Dyna algo-

rithm for integratcd planning, reacting and learning in systems. Tech-

nical Report CIRSSE-122, Ceater for Intelligent Robotic Systems for

Space Exploration (CIRSSE), Rensselaer Polytechnic Institute, Troy,

NY 12180-3590, 1992.

L

3O

7

ii --

=

i

F

m

r..,.

[11] Pedro U. Lima and George N. Saridis. Measuring Complexity of Intelli-

gent Machines. In submitted to i993 IEEE Int. Conf. Robotic Automat.,

may 1993.

[12] John E. McInroy and George N. Saridis. Reliability analysis in Intelligent

Machines. IEEE Transactions on Systems, Man and Cybernetics, 20(4),

1990.

[131

[141

[15]

[16]

[17]

[lS]

[19]

[_0]

John E. McInroy and George N. Saridis. Techniques for selecting pose

algorithms, submited to Automatica, 1992.

T. Murata. Petri Nets: Properties, analysis and applications. Proceed-

ings of the IEEE, 77(4), 1989.

Y. Narahari and N. Viswanadham. Stochastic Petri Net Models for

Performance Evaluation of Automated Manufacturing Systems. Elsevier

Science Publishers B.V. (North Holland), 1988.

Z. J. Nikolic and K. S. Fu. An algorithm for learning without exter-

nal supervision and its application to learning control systems. IEEE

Transactions on Automatic Control, AC-11(13), 1966.

J. E. Peck. A petri net controller for distributed hierarchical systems.

Technical Report CIRSSE-109, Center for Intelligent Robotic Systems

for Space Exploration (CIRSSE), Rensselaer Polytechnic Institute, Troy,

NY 12180-3590, 1991.

George N. Saridis. Architectures for Intelligent Machines. Technical Re-

port CIRSSE-58, Center tbr Intelligent Robotic Systems for Space Ex-

ploration (CIRSSE), Rensselaer Polytechnic Institute, Troy, NY 12180-

3590, 1991.

George N. Saridis and Kimon P. Valavanis. Analytical design of Intelli-

gent Machines. :tutomatica, 24:123-133, 1988.

M.A. Stybllnski and B.D. Xleyer. Fuzzy cognitive maps, signal flow

graphs and qualitative circuit analysis. In Proceedings of the ICNN,
1988.

31

=

m

[21] R. S. Sutton, A. G. Barto, and R. J. Williams. Reinforcement learning

in direct adaptive optimal control. IEEE Control Systems Magazine,

12(2):19-22, 1992.

[22] Ichiro Suzuki and Tadao Murata. A method for stepwise refinement and

abstraction of Petri Nets. Journal of Computer and Systems Sciences,

27:51-76, 1983.

[23] J. Traub, G. Wasilkowsky, and H. Wozniakowsky. Information-Based

Complezity. Academic Press, Inc., 1988.

[24] Kimon P. Valavanis. A Mathematical Formulation for the Analytical

Design of Intelligent Machines. PhD thesis, Rensselaer Polytechnic In-

stitute, Troy, NY 12180-3.590, 1986.

[25] Kimon P. Valavanis and George N. Saridis. Information theoretic mod-

elling of robotic and automation systems. IEEE Transactions on Sys-

tems, Man and Cybernetics, 18(6):8.52-872, 1988.

[26] Kimon P. Valavanis and George N. Saridis. Probabilistic modelling of

intelligent robotic systems. IEEE Transactions on Robotics and Au-

tomation, 7(1):16,1-171, 1991.

[27] R. Valette. Analysis of Petri Nets by stepwise refinements. Journal of

Computer and Systems Sciences, 18:35-46, 1979.

[28] Fei-Yue Wang and George N. Saridis. A coordination theory for Intelli-

gent Machines. Automatica, 26(5):833-844, 1990.

[29] G. Zames. On the metric complexity of causal linear systems, e-entropy
and e-dimension for continuous time. IEEE Transactions on Automatic

Control, AC-24(4):220-230, 1979.

[30] M.C. Zhou and F. DiCesare. Adaptive design of petri net controllers for

automatic error recovery. In Proceedings of the Third [EEE International

Conference on h_telligel_t Control, August 1988.

32

m

